1 A particle is travelling in a straight line. Its velocity $v \,\mathrm{m\,s^{-1}}$ at time t seconds is given by

$$v = 6 + 4t$$
 for $0 \le t \le 5$.

- (i) Write down the initial velocity of the particle and find the acceleration for $0 \le t \le 5$. [2]
- (ii) Write down the velocity of the particle when t = 5. Find the distance travelled in the first 5 seconds.

For $5 \le t \le 15$, the acceleration of the particle is 3 m s^{-2} .

(iii) Find the total distance travelled by the particle during the 15 seconds. [3]

2

Fig. 5

A toy car is moving along the straight line Ox, where O is the origin. The time t is in seconds. At time t = 0 the car is at A, 3 m from O as shown in Fig. 5. The velocity of the car, $v \, \text{m s}^{-1}$, is given by

[8]

$$v = 2 + 12t - 3t^2.$$

Calculate the distance of the car from O when its acceleration is zero.

3	A particle moves along a straight line containing a point O. Its displacement, x m, from O at time
	t seconds is given by

$$x = 12t - t^3$$
, where $-10 \le t \le 10$.

[5]

Find the values of x for which the velocity of the particle is zero.

A point P on a piece of machinery is moving in a vertical straight line. The displacement of P above ground level at time t seconds is y metres. The displacement-time graph for the motion during the time interval $0 \le t \le 4$ is shown in Fig. 7.

Fig. 7

- (i) Using the graph, determine for the time interval $0 \le t \le 4$
 - (A) the greatest displacement of P above its position when t = 0,
 - (B) the greatest distance of P from its position when t = 0,
 - (C) the time interval in which P is moving downwards,
 - (D) the times when P is instantaneously at rest.

The displacement of P in the time interval $0 \le t \le 3$ is given by $y = -4t^2 + 8t + 12$.

(ii) Use calculus to find expressions in terms of t for the velocity and for the acceleration of P in the interval $0 \le t \le 3$.

[6]

(iii) At what times does P have a speed of
$$4 \,\mathrm{m \, s^{-1}}$$
 in the interval $0 \le t \le 3$?

In the time interval $3 \le t \le 4$, P has a constant acceleration of $32 \,\mathrm{m \, s^{-2}}$. There is no sudden change in velocity when t = 3.

(iv) Find an expression in terms of t for the displacement of P in the interval $3 \le t \le 4$. [5]

5 Fig. 3 is a sketch of the velocity-time graph modelling the velocity of a sprinter at the start of a race.

(i) How can you tell from the sketch that the acceleration is not modelled as being constant for $0 \le t \le 4$? [1]

The velocity of the sprinter, $v \text{ m s}^{-1}$, for the time interval $0 \le t \le 4$ is modelled by the expression

$$v = 3t - \frac{3}{8}t^2.$$

(ii) Find the acceleration that the model predicts for t = 4 and comment on what this suggests about the running of the sprinter. [3]

(iii) Calculate the distance run by the sprinter from t = 1 to t = 4. [4]

6 Fig. 7 is a sketch of part of the velocity-time graph for the motion of an insect walking in a straight line. Its velocity, v m s⁻¹, at time t seconds for the time interval $-3 \le t \le 5$ is given by

$$v = t^2 - 2t - 8$$
.

Fig. 7

- (i) Write down the velocity of the insect when t = 0. [1]
- (ii) Show that the insect is instantaneously at rest when t = -2 and when t = 4. [2]
- (iii) Determine the velocity of the insect when its acceleration is zero.

Write down the coordinates of the point A shown in Fig. 7. [5]

- (iv) Calculate the distance travelled by the insect from t = 1 to t = 4. [5]
- (v) Write down the distance travelled by the insect in the time interval $-2 \le t \le 4$. [1]
- (vi) How far does the insect walk in the time interval $1 \le t \le 5$? [3]