1 A particle is travelling in a straight line. Its velocity $v \mathrm{~m} \mathrm{~s}^{-1}$ at time t seconds is given by

$$
v=6+4 t \quad \text { for } 0 \leqslant t \leqslant 5 \text {. }
$$

(i) Write down the initial velocity of the particle and find the acceleration for $0 \leqslant t \leqslant 5$.
(ii) Write down the velocity of the particle when $t=5$. Find the distance travelled in the first 5 seconds.

For $5 \leqslant t \leqslant 15$, the acceleration of the particle is $3 \mathrm{~m} \mathrm{~s}^{-2}$.
(iii) Find the total distance travelled by the particle during the 15 seconds.

2

Fig. 5

A toy car is moving along the straight line $\mathrm{O} x$, where O is the origin. The time t is in seconds. At time $t=0$ the car is at A, 3 m from O as shown in Fig. 5. The velocity of the car, $v \mathrm{~m} \mathrm{~s}^{-1}$, is given by

$$
v=2+12 t-3 t^{2} .
$$

Calculate the distance of the car from O when its acceleration is zero.

3 A particle moves along a straight line containing a point O . Its displacement, $x \mathrm{~m}$, from O at time t seconds is given by

$$
x=12 t-t^{3} \text {, where }-10 \leqslant t \leqslant 10 .
$$

Find the values of x for which the velocity of the particle is zero.

4 A point P on a piece of machinery is moving in a vertical straight line. The displacement of P above ground level at time t seconds is y metres. The displacement-time graph for the motion during the time interval $0 \leqslant t \leqslant 4$ is shown in Fig. 7.

Fig. 7
(i) Using the graph, determine for the time interval $0 \leqslant t \leqslant 4$
(A) the greatest displacement of P above its position when $t=0$,
(B) the greatest distance of P from its position when $t=0$,
(C) the time interval in which P is moving downwards,
(D) the times when P is instantaneously at rest.

The displacement of P in the time interval $0 \leqslant t \leqslant 3$ is given by $y=-4 t^{2}+8 t+12$.
(ii) Use calculus to find expressions in terms of t for the velocity and for the acceleration of P in the interval $0 \leqslant t \leqslant 3$.
(iii) At what times does P have a speed of $4 \mathrm{~m} \mathrm{~s}^{-1}$ in the interval $0 \leqslant t \leqslant 3$?

In the time interval $3 \leqslant t \leqslant 4$, P has a constant acceleration of $32 \mathrm{~m} \mathrm{~s}^{-2}$. There is no sudden change in velocity when $t=3$.
(iv) Find an expression in terms of t for the displacement of P in the interval $3 \leqslant t \leqslant 4$.

5 Fig. 3 is a sketch of the velocity-time graph modelling the velocity of a sprinter at the start of a race.

Fig. 3
(i) How can you tell from the sketch that the acceleration is not modelled as being constant for $0 \leqslant t \leqslant 4$?

The velocity of the sprinter, $v \mathrm{~m} \mathrm{~s}^{-1}$, for the time interval $0 \leqslant t \leqslant 4$ is modelled by the expression

$$
v=3 t-\frac{3}{8} t^{2} .
$$

(ii) Find the acceleration that the model predicts for $t=4$ and comment on what this suggests about the running of the sprinter.
(iii) Calculate the distance run by the sprinter from $t=1$ to $t=4$.

6 Fig. 7 is a sketch of part of the velocity-time graph for the motion of an insect walking in a straight line. Its velocity, $v \mathrm{~m} \mathrm{~s}^{1}$, at time t seconds for the time interval $-3 \leqslant t \leqslant 5$ is given by

$$
v=t^{2}-2 t-8
$$

Fig. 7
(i) Write down the velocity of the insect when $t=0$.
(ii) Show that the insect is instantaneously at rest when $t=-2$ and when $t=4$.
(iii) Determine the velocity of the insect when its acceleration is zero.

Write down the coordinates of the point A shown in Fig. 7.
(iv) Calculate the distance travelled by the insect from $t=1$ to $t=4$.
(v) Write down the distance travelled by the insect in the time interval $-2 \leqslant t \leqslant 4$.
(vi) How far does the insect walk in the time interval $1 \leqslant t \leqslant 5$?

